
Algorithm Methods Comparison on TSP 
Xian Wu1,#, Yu Hao1,#,*, Kaiyu Guo2, Huyu Wu2 

1Institute of Pittsburgh, Sichuan University, Chengdu, China 

2Institute of Computer, Sichuan University, Chengdu, China 

#Xian Wu and Yu Hao contributed equally to this study 

*Corresponding author 

Keywords: combinatorial optimization, TSP, evolutionary algorithms, reinforcement learning 

Abstract: In the previous research, other researchers focus on the improvement and hybrid 

algorithms that can be used in solving TSP. However, this article indicates eight different algorithms 

to solve TSP which includes Advantage Actor Critic (A2C), Deep Q-Network (DQN), Proximal 

Policy Optimization (PPO) and five number of evolutionary algorithms: Particle swarm optimization 

(PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA), Genetic Algorithm (GA), Tabu 

Search (TS). The article states that it’s significant to do research on TSP, and builds a specific 

question initially. Next, the article shows the principle of each algorithm and fundamental operation 

step. Then, author do an internal comparison in the evolutionary algorithms, the step is also known 

as adjusting parameter. This step compares the specific time and distance-cost among different 

parameter setting. Obviously, it can make the researcher consider the better performance of the 

algorithms in different conditions. Finally, the author compares the different behavior between those 

eight algorithms, illustrating the path figure and converge figure of each algorithm. Path figures and 

converge figures illustrate how the iteration times affect the converge steps and specific path. All the 

works done contributes to the research of TSP to some extents. 

1. Background 

1.1. Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a combinatorial problem, which elaborates the specific 

path to reach the list goals of the problem. Importantly, all the goals in the TSP can only be reached 

once at most. In order to find the shortest path to meet the expectation, many algorithms use different 

method based on different fundamentals. The problem is very classical and worthwhile to research. 

1.2. Specific Introduction 

In the traveling sales problem, the authors try to get the final result as quickly as possible, as stable 

as possible, and as accurate as possible. Then, the author chooses three algorithms from reinforcement 

learning algorithms, which include A2C, DQN, and PPO. The author also chooses five algorithms 

from evolutionary and swarm algorithms: PSO, ACO, SA, GA, and Tabu search. All of the algorithms 

mentioned above are advantageous in solving combinatorial optimization; and are successfully 

applied in the TSP field. In this article, the authors try to determine these eight algorithms' advantages 

and disadvantages. Specifically, the author will use Python to run codes in a unique data environment. 

Then, the author will analyze the result of the output. Finally, compare the convergence and path 

graphs among different algorithms to conclude. 

In the previous research, some authors design many algorithms, including reinforcement learning 

and evolutionary algorithms. Additionally, all the algorithms perform well in their behavior in solving 

TSP questions. Some searchers focus on the improvement of the specific algorithms, some searchers 

vote on the number to be set in the parameters, and others search about generating new practical 

algorithms like hybrid neuro evolution algorithms. 

Although the direction of their research is various, the contribution of the combination 

2023 9th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2023)

Copyright © (2023) Francis Academic Press, UK DOI: 10.25236/icmmct.2023.040282



optimization is significant. In this research, the author will focus on the new aspect of the question, 

which is the comparison of different algorithms in the same environment. Every algorithm has its 

advantages and disadvantages in solving the problems in TSP. Due to the different original principles 

of algorithms, the author will analyze the different properties. Finally, the author will try to get a 

general conclusion depending on the data. 

2. Building the TSP Model 

2.1. Case Study Principle 

The Figure 1 below shows a distribution of the cities on Graph G, the map of TSP shows the goal 

and also the specific destination. These cities must be included in the route T. Additionally, the red 

points indicate the specific cities and the blue lines illustrate the route T. The goal of authors’ project 

is to minimize the distance of route T.  

 

Figure 1 The map of TSP. 

Formally, the graph can be described by G= (𝑉,𝐴), where V is the collection of N vertices [1], 𝐴 =
{(𝐼, 𝐽): 𝐼, 𝐽 ∈ 𝑉} is the set of edges with cost 𝑐: 𝐴−> 𝑅, 𝑐: (𝑖, 𝑗)−> 𝑐𝑖,𝑗, 

Where 𝑐𝑖,𝑗 is the distance from node 𝑖 to node 𝑗. 

Lastly, 𝑋𝑖𝑗 is a Boolean variable such that 𝑋𝑖𝑗 =1 if the edge (𝑖, 𝑗) is active. The formulation of 

this question is: 

 max − ∑ ∑ Xijcij = f(T)ji                            (1) 

s. t ∑ Xij = 1  i ∀i: (i, j) ∈ A                           (2) 

∑ Xji = 1  i ∀i: (j, i) ∈ A                           (3) 

∑       Xij ≥ 2  ∀i∈S,j∈V\S  S ⊂ V, S ∉ {⊘, V}                           (4) 

Xij ∈ {0,1} 

3. Introduction to Each Algorithm 

3.1. Advantage Actor Critic (A2C) 

Define A2C is one of the members of the actor-critic family. A2C is parallel and is able to support 

every kind of spaces. An actor-critic algorithm is a policy gradient algorithm which uses function 

estimation in place of empirical returns in the policy gradient. In addition, the actor-Critic algorithm 

is a Reinforcement Learning agent that combines value optimization and policy optimization 

approaches. Specifically, the Q-learning and Policy Gradient algorithms are combined by the the 

Actor-Critic.  

Actor-Critic has two function approximations (two neural networks): The parameter of policy 

function (Actor) is θ: πθ(s, a, θ) [2]. The Actor is a PG algorithm that decides on an action to take. 

The parameter of value function (critic) is ω: q
ŵ

(s, a, ω). 

A2C uses the Advantage function as Critic, and it does not use Action value function, which is an 

advantage. This method has an idea that the Advantage function calculates how better taking that 

action at a state is compared to the average value of the state. It is subtracting the mean value of the 

283



state from the state action pair: 

A(s, a) = Q(s, a) − V(s) 

Q(s,a) is Q value for action a in state s, and V(s) refers to the average value of that state. 

The problem with implementing this advantage function is that it requires two value functions — 

Q(s,a) and V(s) and TD error is a good estimator of the advantage function. 

A(s, a) = r + γV(s′) − V(s)                        (5) 

Algorithm 1 Advantage actor-critic pseudocode 

Input: 

Output: optimized 

Initialize: ; s from environment 

Repeat for each step 

Perform action according to policy π(a|s; θ) 

Get s', reward from the environment 

       δ = reward + γVω(s′) − Vω(s) 

θ = θ + α∇ωlogπθ(s, a)δ 

ω = ω + βδ∇Vω(s) 

s ←  s′ 
Until num of steps reaches the limit 

3.2. Deep Q-Network (DQN) 

Q(s,a) is built to store Q-values for the combination of s and an in Q-Learning [3]. However, when 

the memory and computation required for the Q-value algorithm are high, the Q-Learning function 

should be instead by an approximator -- Deep Q-Network (DQN): Q(s, a; θ)with parameters θ. DQN 

is a neural network used to learn a Q-function. As most reinforcement learning is associated with 

complex (typically visual) inputs, the initial layers of a DQN usually are convolutional. 

The optimized loss functions at iteration i, which is to estimate this network is that: 

Li(θi) = 𝔼s,a,r,s′[(yi
DQN − Q(s, a; θi))2]                   (6) 

With 

yi
DQN = r + γ max

a′
Q(s′, a′; θ−)                      (7) 

Where θ−
 is the parameters of a fixed and separate target network. Also, there is a crucial 

innovation that to make the parameters of the target network Q(s′, a′; θ−) to stay for a fixed number 

of iterations while updating the online network Q(s, a; θi) by gradient descent and the update is: 

𝛻𝜃𝑖
𝐿𝑖(𝜃𝑖) = 𝔼s,a,r,s′[(yi

DQN − Q(s, a; θi)∇θ, Q((s, a; θi)]               (8) 

This approach is model-free because this environment produces the states and rewards. It is also 

off-policy because these states and rewards can be obtained with a behavior policy (epsilon greedy in 

DQN) and it is different from the online policy that is learned. 

Another important ingredient that make the DQN to proceed is the experience replay. During 

learning, the agent accumulates a dataset 𝒟t = {e1, e2, . . . , et} of experiences et = (st, at, rt, st+1) 

from many episodes. The sequence of the losses can be illustrated by the function below: 

𝐿𝑖(𝜃𝑖) = 𝔼(s,a,r,s′)~u(D)[(yi
DQN − Q(s, a; θi))2]                 (9) 

3.3. Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) is an architecture and it can avoid over much policy updates 

and it makes the agent's training more stable. The PPO algorithm combines ideas from A2C which is 

an algorithm has multiple workers and TRPO that uses a trust region to improve the Actor. The main 

method is that after an update, the new policy would not be too different with the old or original policy 

[4]. Thus, PPO uses clipping to avoid the over much update. 

284



Algorithm 2 Deep Q-Learning with experience replay 

Initialize: replay memory 𝒟 to capacity N 

Initialize action-value function Q with random weights θ 

Initialize target action-value function Q̂ with weights θ−= θ 

For episode = q, M do 

Initialize sequence 𝑠1 = {𝑥1} and preprocessed sequence ∅1 = ∅(𝑠1) 

For t=1,T do 

With probability ε select a random action 𝑎𝑡 

Otherwise select 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(∅(𝑠𝑡), 𝑎; 𝜃) 

Execute action 𝑎𝑡in emulator and observe reward 𝑟𝑡and image 𝑥𝑡+1 

Set 𝑠𝑡+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1 and preprocess ∅𝑡+1=∅(𝑠𝑡+1) 

Store transition (∅𝑡 , 𝑎𝑡 , 𝑟𝑡 , ∅𝑡+1) in D 

Sample random minibatch of transitions (∅𝑡 , 𝑎𝑡 , 𝑟𝑡 , ∅𝑡+1) from D 

Set 𝑦𝑗 = {
𝑟𝑗      𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑗 + 1

𝑟𝑗 = 𝛾𝑚𝑎𝑥𝑎′�̂�(∅𝑗+1, 𝑎′; 𝜃−)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Perform a gradient descent step on (𝑦𝑗 − 𝑄(∅𝑗 , 𝑎𝑗 , 𝜃))2 with respect to the network parameters θ 

Every C steps reset �̂� = 𝑄 

End for 

End for 

It should to use a loss function which combines the policy surrogate and a value function error term 

if the neural networks architecture shares parameters bewteen the policy and value function. The 

following objective which is approximately every iteration is illustrated below: 

Lt
CLIP+VF+S(θ) = 𝔼t̂[Lt

CLIP(θ) − c1Lt
VF(θ) + c2S[πθ](st)]         (10) 

Where c1 and c2 are coefficients, S denotes an entropy bonus, and Lt
VF is a squared-error loss 

(Vθ(st) − Lt
targ

)2. 

One of the methods of policy gradient execution, popularized in [Mni+16] and well-suited for use 

in current neural networks, and it runs the policy for T timesteps and T is extremely shorter than the 

episode length, and uses the samples that are collected for an update. This style requires an advantage 

estimator that does not look beyond timestep T. The estimator used by [Mni+16] is 

𝐴�̂� = −𝑉(𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1+. . . +(𝛾𝑇−𝑡+1𝑟𝑇−1 + 𝛾𝑇−𝑡𝑉(𝑠𝑇)̂       (11) 

Where t specifies the time index in [0, T], within a given length-T trajectory segment.  

In general, synthesize these choices, a truncated version of generalized advantage estimation can 

be used, which reduces to the above Equation when λ = 1: 

𝐴�̂�=𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1+. . . +. . . +(𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1              (12) 

Where 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) 

A proximal policy optimization (PPO) algorithm that uses fixed-length trajectory segments is 

shown below. 

Algorithm 3 PPO, Actor-Critic Style 

For iteration=1, 2,... do 

For actor=1, 2, ...,N do 

Run policy 𝜋𝜃𝑜𝑙𝑑
 in the environment for T timesteps 

Compute advantage estimates 𝐴1̂, . . . ,  𝐴�̂�  
End for 

Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT 

      𝜃𝑜𝑙𝑑  ← 𝜃 

End for 

285



3.4. Particle Swarm Optimisation (PSO) 

Particle swarm optimization (PSO) is a type of the bio-inspired algorithms, and it is easy to search 

for an optimal solution in the solution space. It is much different from other optimization algorithms, 

because it only has few hyperparameters and it only needs the objective function, meanwhile, it is not 

dependent on any differential form or the gradient of the objective. 

Because there is no better way to know if p- or g-increment should be larger. Therefore, these terms 

were also stripped out of the algorithm [5]. The current simplified PSO now adjusts velocities by this 

formula 

𝑣𝑥[][] = 𝑣𝑥[][] + 

2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑝𝑏𝑒𝑠𝑡𝑥[][] − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑥[][]) + 

2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑝𝑏𝑒𝑠𝑡𝑥[][𝑔𝑏𝑒𝑠𝑡] − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑥[][]            (13) 

Algorithm 4 PSO algorithm 

Procedure PSO 

For each particle i 

Initialize velocity Vi and position Xi for particle i 

Evaluate particle i and set pBesti = Xi 

End for 

gBest = min {pBesti} 

while not stop 

For i=1 to N 

Update the velocity and position of particle i 

Evaluate particle i 

If fit(pBesti)< fit(gBest) 

gBest= pBesti; 

end for 

end while 

print gBest 

end procedure 

3.5. Ant Colony Optimization (ACO) 

ACO, also known as ant colony optimization, is a model with parallel computing support and 

continuous optimization ability. The general idea of creating this kind of algorithm is foraging 

behaviors from the real ants. When the ants search for food at the beginning, they randomly explore 

the nest. As soon as the ants find the food, they return to the nest. When the ants move from place to 

place, they will leave a pheromone, leading the ants to find the route as well as possible [6]. ACO, as 

an algorithm, is developed to be a metaheuristic for combinatorial optimization. It is a good choice for 

solving TSP questions. 

The ACO metaheuristic consists of three algorithmic components that are gathered in the Schedule 

Activities construct. 

Algorithm 5 Ant Colony Optimization metaheuristic 

While termination conditions are not met, do 

Schedule Activities 

Ant Based Solution Construction ( ) 

Pheromone Update ( ) 

Daemon Actions ( ) {optional} 

end Schedule Activities 

end while 

Ant Based Solution Construction ( ) is Artificial ants construct solutions from sequences of solution 

components taken from a finite set of n available solution components C={cij}. 

Pheromone Update ( ) is The aim of pheromone update is to increase the pheromone values 

286



associated with good or promising solutions and decrease those that are associated with bad ones. 

τij ← {
(1 − ρ)τij + ρ∆τ   if τij ∈ sch 

(1 − ρ)τij     otherwise
                      (14) 

Where ρ ∈ (0,1] is the evaporation rate. Pheromone evaporation is needed to avoid too rapid a 

convergence of the algorithm. 

Daemon Actions ( ) is Daemon actions that can be used to implement centralized actions which 

cannot be performed by single ants. 

3.6. Simulated Annealing (SA) 

SA is the abbreviation of simulated annealing, which is also a module to solve combinational 

optimization. SA is widely used in evolutionary and swarm algorithms, and it can be treated like a 

synchronous approach with occasional enforcement of the best solution. It is different from the 

traditional hill-climbing algorithm. SA avoids falling into the local optimum. Just like annealing at a 

high temperature, the algorithm accepts many solutions. Then, the algorithm refuses to accept the non-

optimal solution when the temperature gets lower. In this case, the probability of finding the best 

solution increases. 

The basic SA approach is shown below. 

The initial solution is generated randomly by assigning a value to each dimension i, i=1... N, in the 

interval [lbi,ubi] and lbiis the lower bound and the ubi is higher bound for variable i. 

The neighbor solution, xk+1, is created below: 

xi
k+1 = xi

k + u(ubi − xi
k), sgn(u − 0.5)  < 0                 (15) 

And 

xi
k+1 = xi

k − u(xi
k − ubi), sgn(u − 0.5)  ≥ 0                 (16) 

Else, 

xi
k+1 = xi

k, 

where u ∈  U[0,1] 

The new function value is calculated, and the solution is accepted if the move improves the current 

solution. 

P A(∆, tk) = exp(−(
∆

f(xk)
)tk)                    (17) 

Where PA is the probability of acceptance, ∆is the difference between f(xk+1) and f(xk), and tk 

is the temperature in iteration k. 

Algorithm 6 Template of simulated Annealing Algorithm 

Input: Cooling schedule. 

S=𝑠0; 

Repeat 

Repeat  

Generate a random neighbor s’ 

         ∆E = f(s′) − f(s) 

If ∆E ≤ 0 Then s=s’ 

Else Accept s’ with a probability 𝑒
−∆𝐸

𝑇 ; 

Until Equilibrium condition 

T=g(T) 

Until Stopping criteria satisfied 

Output: Best solution found 

287



3.7. Genetic Algorithm (GA) 

The idea of generating this algorithm comes from the evolution of the genetics of human beings. 

Initially, the data of the algorithm is chaotic. However, the algorithm gives the data several 

evolutionary steps to be a feasible solution. GA will treat the data like each specific gene in the 

chromosomes. Moreover, GA will also use the method of genetic recombination and genetic mutation 

to get the new chromosomes. Judging from the fitness value of chromosomes, GA will show us the 

optimal solution to the problems. 

Algorithm 7 Genetic Algorithm 

Generate initial population of size nP 

Evaluate the initial population according to fitness criteria 

While ( current_generation< nG ) { 

Breed rC*nP new solutions from current population 

From child solution via crossover 

If( RandomRange(0.0, 1.0) < rM  ) 

Mutate the child solution 

Evaluate the child's solution according to fitness criteria 

Add child to population ( MaxPop = nP* (1+ rC) 

Remove the rC8np least-fit solutions from the population 

} 

Return [most fit member of population 

Where np is the base population size, nG is the number of generations, rC is the crossover rate, and 

rM is the mutation rate. 

3.8. Tabu Search (TS) 

Tabu search is an advantageous algorithm for solving combinatorial optimization problems. Due to 

its unique algorithm, it will also build a tabu list to prevent redundant data changes, which benefits the 

accuracy of the result. 

There are two vital elements in a simple form of tabu search. That is constraining the search by 

classifying sure of its moves as forbidden (i.e., Tabu) and freeing the search by a short-term memory 

function that provides "strategic forgetting."  

The main procedure of simple Tabu Search is shown below: 

Select an initial x ∈ X and let x* : = x. Set the iteration counter k = 0 and begin with T empty. 

Then, if S(x) - T is empty, go to the Step 4.  

Else, set k := k + 1 and select sk  ∈ S(x) − T such that sk(x) =  OPTIMUM(s(x): s ∈ S(x) − T). Let 

x:=sk(x). 

If c(x) < c(x*), where x* denotes the best solution currently found, let x* := x.  

If a number which is chosen of iterations has elapsed either in total or since x* was last improved, 

or if S(x)-T = ∅ upon reaching this step directly from Step 2, stop. Else, update T and return to Step 

2. 

4. Set Up and Parameter Comparing 

4.1. The Set for Reinforcement Study Algorithms 

Those algorithms include A2C, DQN, and PPO. There is no parameter set for these algorithms, 

which indicates they do not have to be set. 

4.2. The Set for Evolutionary Algorithms 

According to the different principle used in the different evolutionary, author try to find the 

fundamental for those different algorithms. Importantly, collect the experiment result set by the 

different number of parameters. By analyzing the cost and time used in different conditions, therefore, 

the authors can get the trend of the data. 

288



4.2.1. Set Up for ACO 

ACO algorithm can be used in the TSP question; it can be treated as ants travel through different 

cities. When the ants travel, they will choose the closest distance between the two cities. Here comes 

an equation:p
ij
k =

(τij
α)(ϑij

β
)

∑(τij
α)(ϑij

β
)
, it shows the probability of coming to the next city. τij is the concentration 

of the pheromone; ϑij is the inverse of the distance between the two cities. Additionally, α and β are 

the parameters of the Equation. Therefore, in order to solve the question, the authors definite a distance 

function and the primary data. Then, the authors adjust the parameter of the number of ants and the 

α and β to get the optimization solution for this specific question. 

Using the scientific method of controlling parameters. The authors change the value of a parameter. 

Meanwhile, the authors also keep the other parameter the same. The reason is to find the vital 

parameter; additionally, the authors can find a rough range to get the optimal solution by adapting the 

parameter. In order to eliminate the occasional error made by Python code, the authors will do the 

same value five times to get the average value. The following Table 1 shows us the details of the ant 

comparison: 

Table 1 Internal comparison in Ant-count  

Ant-count 5 25 45 65 

Totally cost 469.69 458.72 457.70 454.60 

Totally time 5.66s 28.36s 51.77s 72.63s 

Analyzing the data shown in the Table 1 tells us that with the increase of the number of Ant-count, 

the totally cost of the time will increase. One more thing to notice is that there is a significant change 

in totally cost during the range from 5 to 25. However, it can also be found that the cost is indeed 

reducing to a slight degree.  

Table 2 Internal comparison in pheromone 

Pheromone 1 1.5 2 2.5 

Totally cost 466.71 497.11 479.80 480.95 

Totally time 5.71s 5.61s 6.21s 5.63s 

From the result of Table 2, the time cost for each pheromone is almost identical; from the 

concentration of 1 to the concentration of 1.5, the totally time decreases only at a small number. From 

1.5 to 2, the totally time increases instead. Finally, the totally cost of time will decrease again. 

As for the totally cost, it is wired to find the pheromone increase from 1 to 1.5. Then from 1.5 to 2, 

the cost reduces. Last, the cost is kept at a range from 2 to 2.5. 

Table 3 Internal comparison in Beta 

Beta 2 3 4 5 

Totally cost 467.25 465.82 461.63 462.54 

Totally time 5.70s 5.69s 5.62s 5.63s 

For parameter beta, authors choose four different numbers. From the Table 3 data author did, 

authors realized there is no significant difference between the four different totally time costs. It can 

also be easily found that the cost is similar to each other. Therefore, maybe the parameter Beta did not 

play an essential role in the algorithms. 

4.2.2. Set Up for SA 

In the SA algorithms, to solve the problem of TSP, the authors set the parameter for the initial 

temperature, the initial distance, the cycle index, and the maximum of the cycle index. The first step 

is to exchange the position of two cities in a random manner; next, there will be a new distance. The 

SA will compare the number of the initial distance and the new distance [7]. Here comes the equation 

delta D = Dn − Di. If the delta D is smaller than zero, it will return the number 1; if the delta D is 

more extensive than zero, it will return the number 1/ exp (
delta D

T
). Additionally, the return number 

289



will also be compared to evenly distributed random values from zero to one. Finally, if the number is 

more significant than the random values, it will be the new solution. As the temperature falls and the 

cycle of index increases, it will get the combination optimization solution. 

Since the essential parameters for SA are the initial temperature and the alpha in lower the 

temperature. The authors try to experiment with different performances in different parameters. 

Table 4 Adjusting parameter of Initial T 

Initial T 50000 100000 150000 200000 500000 

Totally cost 463.49 461.67 457.588 448.09 457.00 

Totally time 3.038 3.00 2.97 2.98 3.03 

As Table 4 shown above, the temperature should not be as high as possible. Instead, according to 

the experiments' data, the temperature increase leads to the total cost decrease from 50000 to 200000. 

However, it seems to have a limitation; in the range from 200000 to 500000, the totally cost increases 

instead. 

Table 5 Adjusting parameter of alpha 

Alpha 0.95 0.98 0.99 

Totally cost 449.04 459.54 456.18 

Totally time 3.00 2.98 2.996 

Some research said the best alpha set in SA should be 0.99 or 0.98. However, this Table 5 indicates 

that the alpha 0.95, 0.98, and 0.99 have a slight difference in the time cost. It can almost be ignored by 

the effect of time. In the aspect of cost, the number will increase firstly and decreases at the Alpha 

0.98. Finally, the parameter gets to 0.99; the cost reduces a little. 

4.2.3. Set Up for GA 

As mentioned above, GA uses genetic evolution to solve problems. It is advantageous to use in 

figuring out the TSP question. The authors need to set the iterations of the chromosomes and the 

probability of mutation and recombination. Each city in the TSP can be represented like a single gene 

in chromosomes. GA changes the position of the genes in chromosomes to generate new chromosomes. 

With the increase of the iterations, the fitness value will decrease because GA chooses the 

chromosomes with the low fitness value as the optimal solution to the problem. 

The important stuff to do is to adapt the particular value of the parameter. For GA, there are two 

parameters that play an essential role in the total cost and time of TSP. The authors will also do two 

experiments to check which values of mutation and iteration are optimal. 

Table 6 checking SA iterations number 

Iteration 100 500 1000 2000 

Totally cost 696.91 482.14 472.59 459.618 

Totally time 1.19 5.93 11.9 23.61 

There will be no optimal solution when the iteration value is small. Instead, the local maximum will 

exist. In the other aspects, the iterations value is very high, and there will cost much time to solve it. 

From the Table 6 authors can see with the number of iterations increases, the time will increase for 

sure. The authors can also notice that the cost will keep decreasing with the rising iteration times. 

Table 7 checking the probability of mutation value 

Probability of mutation 0.001 0.01 0.05 0.1 

Totally cost 827.1 552.48 458.30 468.08 

Totally time 11.76 12.06 12.47 11.86 

After checking the result of Table 7, the author figured out that when the probability is small, there 

will not be many new genes generated by the mutation. Meanwhile, when the probability is high, it 

will be a random search, which harms accurate cost and time. The total time used by the increasing 

probability of mutation, which wound increase firstly. However, it wound reduce when the probability 

290



is from 0.05 to 0.1. As for the cost, it reduces from 0.001 to 0.05. The cost will rise again when the 

probability increases from 0.05 to 0.1. The probability at 0.05 may be the inflection point. 

4.2.4. Set Up for Tabu 

In the combinatorial optimization of TSP, there is a way to show the result:  D =

{x = (i1, i2….in)|n ∈ N), defining its field mapping 2-opt, the field structure will be Cn
2 = n(n − 1)/2. 

Therefore, it comes to lots of probability [8]. Tabu changes two cities' positions each time to compare 

the distance between the new one and the original. The Tabu will mark the path which is not the best 

solution. In this case, it can escape from the local optimization. It is also significant for the Tabu search 

to build a list that prevents the algorithm from running in the same cycle [9]. All the paths that were 

marked before will not allow us to get into the new cycle. 

In tabu search, the tabu list is the most basic stuff. Therefore, the parameter of tabu-long is also 

significant for the authors to set. The authors will build an experiment to find the best value among the 

domains in this case. 

Table 8 considering the effect of Tabu long in different number 

Tabu long 10 100 1000 

Totally cost 481.92 451.05 484.99 

Totally time 40.14 40.36 40.50 

Compared to other algorithms, the result score of cost is stable. In Table 8, the authors get the same 

result by five times. Due to the existence of the tabu list, the algorithm can have the "memory." It can 

explain the reason why the result is stable. After seeing this result data collected, the author finds time 

spent on finding the path in TSP is similar. The total cost decreased initially, and it increased with the 

Tabu list's length. 

4.2.5. Set Up for PSO 

As for the PSO algorithms, the authors follow the previous research other authors did. In this 

algorithm, the authors imitated the behavior of birds. The optimal solution will be the food source that 

needs to be found by birds. When running the algorithms, the birds must change the information they 

get to find the optimal solution. The renew velocity in several dimensions is shown [10]:  

Vid = ωVid + C1random(0,1)(Pid − Xid) + C2random(0,1)(Pgd − Xid) 

C1 and C2 are the velocities constant, and the random(0,1) indicates the number of it will be 

randomly chosen from 0 to 1. Pid shows us the dimension, and the Pgd presents the optimal solution 

that the algorithms can find [11]. Using this concept, the author defined the distance sum function. 

Then initialize the parameter of this Python program, and the author chooses the different iteration 

times of PSO. The result is below: 

Table 9 the comparison of iteration in PSO 

Iteration 5 10 50 100 1000 

Totally Cost 478.62 459.62 443.82 428.98 430.75 

Totally Time 8.48 15.61 80.85 163.25 1910.50 

As all authors can see from the Table 9, the total time wound increase with the iteration rose. As 

for the cost in the path to find the optimal solution, it would decrease ranged from 5 to 100. 

Additionally, in the range from 100 to 1000, the cost will increase instead. The authors also realized it 

might change from 100 to 1000. In other words, the change was not significant. 

5. Comparing Different Algorithms and Discussions 

5.1. The Optimal Setting for the Case Study 

First of all, the case has an optimal target solution shown with the optimal cost of 426 with a number 

of 51 cities in the below Figure 2: 

291



 

Figure 2 The figure of optimal solution 

5.2. Comparing Reinforcing Algorithms 

5.2.1. The Path, Cost, and Time Used to Compare 

Table 10 Comparison of Totally cost and time  

 A2C DQN PPO 

Totally cost  436 437 429 

Totally time  201.15s 279.36s 527.46s 

Figure 

   

Judging from the cost of each algorithm. It was seen from Table 10 that PPO is the most closed to 

the optimal solution. In reinforcement algorithms, all of the algorithms above performed well and were 

all approached to the optimal solution. 

5.2.2. The Coverage Figure 

 

Figure 3 The coverage figure 

292



The figure 3 above shows us the specific coverage step in the reinforces algorithms; the authors 

realize the first few steps for all three algorithms are similar [12]. In contrast, the PPO has a significant 

change in step about 400, allowing it to reduce the cost and be closer to the optimal solution. 

5.3. Comparing the Different Evolutionary Algorithm 

Like 5.2, authors were curious about the behavior and path did by different evolutionary algorithms. 

Additionally, choosing the specific parameters which are compared in part 4 to make sure the 

preciseness: 

Table 11 Comparison of cost and time 

 Totally cost Totally time Figure 

ACO 458.72 28.36s 

 

SA 442.96 2.91s 

 

GA 453.73 11.84s 

 

Tabu 451.04 39.75 

 

PSO 449.93 66.18 

 

5.3.1. The Different Time, Cost, and Figure Paths 

According to the experiment result from Table 11, the solution in SA with a total cost of 442.96 is 

293



better among all five evolutionary algorithms. Notably, the different fundamental principle of each 

algorithm shows the different path in solving the TSP. 

5.3.2. Compared of Converged Figure 

Knowing that the iteration time is the particularly significant parameter in evolutionary algorithms, 

and the converge figure plays a massive role in comparing different algorithms, the below Table 12 

shows the specific converge steps: 

Table 12 Comparison of converged figure 

Algorithms Figure 

ACO 

 
SA 

 
GA 

 
Tabu 

 
PSO 

 
All the figure above shows the concrete steps of converge. As the authors see from the table, ACO 

can converge to the optimal solution found at a short iteration time. When the iteration times get to 2, 

the line is smooth. Although the iteration time still increased, the value would not change [13]. 

In the aspect of SA, the converge step is hard; the line may get into the local maximum for the first 

294



iteration. However, when the iteration time approaches 200, there is a significant change in the cost 

for TSP. Then it keeping reduce the total cost until the iteration gets to 400. Finally, the line becomes 

smooth after iteration time at 420. 

Looking at the figure about the GA, authors can see it initially decreases the cost. Then, the 

decreasing rate is lower and becomes smooth when the iteration time is 400. At the time of 600, the 

cost reduces slightly and remains to converge after that. 

The Tabu is very different from other algorithms, and the figure shows the authors that the Tabu 

algorithms cannot get to the converge condition. The curve is constantly changing with the iteration 

time changes at a reasonable range. 

PSO is more like the converge step of ACO. The converge step is clear and straightforward; the 

cost reduces until the iteration time reaches 4. The curve then becomes smooth, and the cost becomes 

stable. 

6. Conclusion 

Generally speaking, PPO shows a stable and close approach to the problem. SA shows the fast 

running time of this problem, and PSO and ACO indicate the stable converge curve for solving TSP. 

Among the authors' research, all the algorithms have advantages and disadvantages. When facing the 

TSP, the choice for us to solve it is multiple. We can select the best method depending on the specific 

problem condition. The control of variables still has some limitations. 

Furthermore, we can focus on how exactly the number of parameters changes; for the different 

parameters, the converge condition may be various. Moreover, we can find which algorithm is better 

following the advantage listed above; our case study is limited, and there will exist more cases to be 

explored. 

References 

[1] https://neorl.readthedocs.io/en/latest/examples/ex1.html 

[2] https://arxiv.org/abs/1602.01783 

[3] https://arxiv.org/abs/1312.5602 

[4] https://arxiv.org/abs/1707.06347 

[5] Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95-

international conference on neural networks (Vol. 4, pp. 1942-1948), IEEE. 

[6] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European 

journal of operational research, 185(3), 1155-1173. 

[7] Onbaşoğlu, E., Özdamar, L. (2001). Parallel simulated annealing algorithms in global 

optimization. Journal of global optimization, 19(1), 27-50. 

[8] Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1 (3), 190-206. 

[9] Glover, F. (1990). Tabu search—part II. ORSA Journal on computing, 2 (1), 4-32. 

[10] Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 

In: 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics 

and simulation (Vol. 5, pp. 4104-4108), IEEE. 

[11] Clerc, M., Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a 

multidimensional complex space. IEEE transactions on Evolutionary Computation, 6(1), 58-73. 

[12] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman 

Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York (1985). 

[13] Zhang, H., Gao, Y.F. (2021). Solving TSP based on an Improved Ant Colony Optimization 

Algorithm. J. Phys.: Conf. ser. 1982 012061 

295

https://neorl.readthedocs.io/en/latest/examples/ex1.html
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1707.06347



